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We report a transition to hard turbulence in rapidly rotating Boussinesq convection at high Rayleigh and
Taylor numbers. The probability density for vertical vorticity develops exponential tails, as in nonrotating
hard-turbulent convection, whereas the temperature and velocity retain Gaussian distributions. The Nusselt-
number scaling with Rayleigh number for the rotating hard-turbulent state is identical to that for nonrotating
laboratory experiments, viz., Nu;Ra2/7. @S1063-651X~96!50306-5#

PACS number~s!: 47.27.Te, 47.32.Cc, 47.27.Cn, 47.27.Eq

Rayleigh-Bénard convection@1# is a common model
problem for transitions to convective turbulence; the experi-
ments of Libchaber and co-workers have delineated the tran-
sitions with increasing nondimensional Rayleigh number Ra
@2–5#. The hard-turbulent state at high Ra has drawn much
attention@6#; nevertheless, only recently~and partly through
this work! has it been seen as an ubiquitous convective state,
with manifestations spanning both large and small aspect
ratio @2–5#, two-dimensional~2D! flows @7#, and even a side-
heated geometry@8#. Here we report an example of hard
turbulence in a strongly rotating fluid of geophysical and
astrophysical relevance with detailed dynamics dramatically
different from the nonrotating case. This discovery sheds
light on the workings of hard turbulence and aids in evalu-
ating theories for convective heat transport.

We integrate the Navier-Stokes equations for a rotating
Boussinesq fluid@1# using a pseudospectral Fourier~horizon-
tally periodic! Chebyshev~vertically bounded! tau method
@9#. The top and bottom surfaces have fixed temperature with
either no-slip or stress-free velocity conditions. Time inte-
gration is by a third-order, hybrid-implicit on-explicit
Runge-Kutta scheme@10# in which the nonlinear and Corio-
lis terms are treated explicitly and the remaining linear terms
implicitly. Pressure boundary conditions are satisfied simul-
taneously with the velocity, using the influence matrix
method@11#, and the resulting Chebyshev-truncation errors
are removed with the tau correction@11#. The solutions have
s51 (s is the Prandtl number!, an aspect ratio of 2~unless
otherwise noted!, and vertical gravity and rotation vectors;
Table I lists the solution parameters. The resolution is chosen
to resolve the Kolmogorov length scale. In addition, the ther-
mal boundary layers are resolved with at least 12 collocation
~grid! points. The linearly most unstable horizontal wave
number k0 increases with the Taylor number@1#, Ta
5(2VL2/n)2 ~whereV is the rotation rate,L is the depth of
the fluid layer, andn is the kinematic viscosity!. For the
highest Ta case (Ta53.23108), k0 is many times larger than
3.117/L, the value for nonrotating convection, and we switch
toA51 for computational efficiency; we have checked at the
lower Ta51.03108 that solutions withA51 and 2 have the
same statistical behavior.

The transition to hard turbulence coincides with the spon-
taneous ejection of plumes from the diffusive thermal layers

at the heated and cooled boundaries@2#. The dynamics of
these plumes has been invoked both directly@3# and indi-
rectly ~through the boundary-layer shear in the large-scale
circulation they organize! @12# to explain the heat-transport
law Nu;Ra2/7. To examine how strong external rotation
modifies these dynamics, we choose cases with comparable
rotation and buoyancy time scales for all Ra. Thus, we fix the
ratio tR /tB5Ro50.75, wheretR5(2V)21 is the rotation
time, tB5AL/(gaD) is the buoyancy free-fall time~i.e., the
time required for a parcel of temperatureD/2 to travel a
distanceL under gravitational accelerationg; a is the ther-
mal expansion coefficient!, and Ro5ARa/(sTa) is the con-
vective Rossby number. HereD is the temperature difference
imposed across the layer. For Ra*106, our solutions possess
the scaling exponentsg50.43160.005 (0.43560.004) and
b50.14060.008 (0.10760.004) for rms vertical velocity
and temperature at midlayer for no-slip~stress-free! bound-
aries. For free-fall to be satisfied, 2g512b @3#. The stress-
free exponents satisfy this relation within two standard de-
viations, while the no-slip solutions obey it within one.

Our results may be summarized as follows. The flow is
linearly unstable to steady rolls at Ra54050 ~5074! for no-
slip ~stress-free! vertical boundaries, as predicted@1#. @For
these low-Ra cases, we chooseA equal to five times the
wavelength of the most unstable linear mode at convective
onset;k050.72/L (0.89/L) is the wave number.# Time de-
pendence occurs immediately at onset in the form of the
Küppers-Lortz transition with rolls losing their stability to
oblique rolls oriented at finite angles, also as predicted@13#.
As Ra is increased, coherent plumes begin to emerge from
the thermal boundary layers: by Ra'63105 strong peaks in
the temperature skewnessŠ(T2^T&)3‹/Trms

3 at the edge of
the boundary layers indicate the plumes (^ & denotes
horizontal- and time-averaging!. A striking feature of the
plumes in this rotating environment is their strong cyclonic
relative vorticity @14#, which develops as they horizontally
shrink due to boundary-layer convergence and thus spin-up
to conserve absolute angular momentum. Their ensuing dy-
namics in the interior is dominated by vortex-vortex interac-
tions @15# with neighboring plumes, which is so efficient in
lateral mixing that a substantial negative temperature gradi-
ent2]zT;0.2D/L (0.25D/L) is sustained@16,17#. In addi-
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tion, with no-slip boundaries the ejection of the strongly vor-
tical plumes from the boundary layers is enhanced by Ekman
pumping@18#, most striking in the vertical-velocity skewness
which is negative within nonrotating boundary layers@19#,
but is positive here. Despite these fundamental differences
from the dynamics in nonrotating convection, the rotating
solutions nevertheless exhibit hard-turbulent behavior at
large Ra.

Figure 1 is Nu21 versus Ra for both no-slip and stress-
free cases. The no-slip results are consistent with the 2/7 law
for Ra.106. The stress-free solutions, on the other hand, are
consistent with Ra1/3 ~i.e., the ‘‘classical’’ law proposed by
Priestley@20#! in the range 106, Ra,43107, then undergo
a transition to a less efficient heat-transport rate at higher Ra.
Given that Ta is different for each Ra, we conclude that Nu
;Ra2/7F( Ro) at low Ro for the no-slip solutions, whereF
is an as yet undetermined function. We might expectF to be
a decreasing function since rotation will enhance Nu slightly
through the Ekman pumping associated with vortical plumes
as proposed from laboratory experiments@21#. Our present
evidence indicates thatF is at most a weak function, but we
are not yet prepared to declare its form.

In contrast to the Nu-Ra scaling, for which only the no-
slip solutions exhibit hard-turbulent behavior, both no-slip
and stress-free solutions undergo a transition to exponential
probability density functions~PDFs! often associated with
hard turbulence, albeit only for vorticity, not temperature as
with nonrotating convection. Figure 2 shows midplane PDFs
of vertical vorticity for Ra55.93105, 2.53106, and
1.13108 (5.63105, 2.03106, and 1.83108) for no-slip
~stress-free!. The lowest Ra solutions exhibit skewed distri-
butions with an exponential cyclonic tail and a weaker anti-
cyclonic tail closer to Gaussian. The cyclonic skewness and
strong intermittency result from angular momentum conser-
vation of the plumes ejected at horizontally convergent sites
in the boundary layers. As Ra increases, the anticyclonic tail

also develops an exponential shape as turbulent midplane
motions redistribute cyclonic vorticity. This transition is
reminiscent of that for temperature PDFs in nonrotating con-
vection.

Despite this transition in the vorticity field at high Ra, the
midplane PDFs forT andvW remain Gaussian, in contrast to
the nonrotating case@2,7#, at least up to the Ra<1.83108 we
have explored. If we take the view that exponential PDFs are
merely indicative of a highly structured field, the thermal
field remains Gaussian while the vorticity field does not be-
cause the vortical interactions between plumes rapidly rob
them of their thermal content through mixing and dilution
@17#, leading to a weakly structuredT field. The dilution of

FIG. 1. Convective heat flux Nu21 versus Ra. The uncertainty
in the data points is roughly the size of the symbols and results from
the finite length of the runs. The solid~dashed! line corresponds to
a 2/7 ~1/3! power law with arbitrary normalization.

TABLE I. Simulation parameters. Racrit andk0 (L
21) are the critical Ra and wave vector associated with Ta. ‘‘Spectral modes’’ refer

to x3y3z, with z vertical.t @L2/(4k)# andWrms (2k/L) are the integration time after transients have subsided and the rms vertical velocity
at midlayer. The maximum Courant-Friedrichs-Levy number, CFL5dtU/dr , is 0.7 for the three-level Runge-Kutta time stepdt; dr and
U are the grid spacing and velocity. The number of ‘‘turnover’’ times simulated for a single ‘‘convection cell’’ istWrms/4(11p/k0).

Ra Ta Racrit k0 Spectral modes Boundaries t Wrms

3.093104 5.503104 1.173104 6.5 64364333 no-slip 2.74 10.0
7.033104 1.253105 1.913104 7.5 96396349 no-slip 1.58 15.2
2.813105 5.003105 4.553104 9.6 96396349 no-slip 0.776 31.1
5.913105 1.053106 7.343104 10.9 96396349 no-slip 0.455 44.6
2.533106 4.503106 1.913105 14.2 1283128365 no-slip 0.122 85.1
8.443106 1.503107 4.533105 17.6 1283128365 no-slip 0.0619 147.2
2.813107 5.003107 9.563105 21.8 1923192397 no-slip 0.0181 243.0
1.133108 2.003108 2.443106 27.9 38433843193 no-slip 0.00551 438.8
5.633104 1.003105 2.133104 8.6 96396349 stress-free 2.99 14.8
1.973105 3.503105 4.703104 10.7 96396349 stress-free 1.74 29.9
5.633105 1.003106 9.223104 12.9 1283128365 stress-free 0.479 51.0
1.973106 3.503106 2.083105 15.9 1923192397 stress-free 0.197 93.2
5.633106 1.003107 4.153105 19.0 1923192397 stress-free 0.0854 145.9
1.973107 3.503107 9.473105 23.5 25632563129 stress-free 0.170 252.0
5.633107 1.003108 1.903106 28.0 25632563129 stress-free 0.0155 402.4
1.783108 3.163108 4.073106 34.0 25632563257 stress-free 0.00749 660.0
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the vorticity field is weaker because it is more strongly con-
centrated in the vortex core region than isT, and the mixing
process primarily affects regions outside the cores. In fact,
when vortex-merger events take place, the net effect is to
enhancethe circulation, not dilute it@15#. Vortex-stretching
during plume ejection acts to concentrate the vorticity in the
core region of a plume, leaving a portion of the plume’s
thermal content in the vortex periphery where it is suscep-
tible to mixing. This view of different mixing dynamics for
T and vorticity can be tested fors@1, where the length scale
for viscous effects exceeds that for diffusion. Laboratory ex-
periments on rotating convection with silicone oil (s'8.4)
indicate that T PDFs remain Gaussian at least up to
Ra<3.731011 when Ro50.75@22#. Having Gaussian PDFs
for vW and exponential PDFs for vorticity is similar to behav-
ior in turbulent shear flows@23#; hence, velocity derivatives
are seen to be more intermittent than the velocity itself.

The fact that rotating convection exhibits Nu;Ra2/7 for
no-slip boundaries, but gives Nu;Ra1/3 for a limited range
in Ra for stress-free, sheds light on the means by which heat
is transported in hard turbulence. All of the general features
assumed in the qualitative scaling theory of Castainget al.
@3# are present here: thermal boundary layers~through which
all of the heat flux is diffusive!, a turbulent interior~de-

scribed by free-fall arguments!, and an intermediate ‘‘mixing
zone’’ ~within which plumes are first formed, then destroyed
by turbulent motions as they travel vertically due to buoy-
ancy!. In fact, because of the efficient lateral mixing in our
rotating solutions, the term ‘‘mixing zone’’ is even more
appropriate for our solutions than the nonrotating case. Thus,
one might imagine that@3# is sufficiently general to encom-
pass nonrotatingand rotating convection. On the other hand
@3#, would also predict Nu;Ra2/7 for stress-free solutions,
as well as no-slip. Because our stress-free results initially
exhibit Nu; Ra1/3, we conclude that the nature of the veloc-
ity conditions is important for the 2/7 law. In fact, this result
supports the alternate theory proposed by Shraiman and Sig-
gia @12# which derives the 2/7 law based on the structure of
the thermal and viscous boundary layers attached to a no-slip
surface. Furthermore, of the four theories of hard turbulence
currently in the literature@3,12,24#, @12# is the only one sup-
ported by our results since it also is the only theory which
distinguishes between no-slip and stress-free boundaries.
However, the reduction in the heat-transport scaling between
stress-free boundaries at high Ra is intriguing. What is the
heat-transport law for rapidly rotating turbulent convection
between stress-free boundaries for Ra.43107? We cannot
answer this yet because our highest Ra is not sufficient to
allow a substantial range of exploration above Ra'43107.
It is interesting to note, however, that the Nu transition at
Ra'43107 occurs when the mean thermal boundary layer
thickness l equals the Ekman-layer thickness
dE5@n/(2V)#1/2 and therefore is likely controlled by rota-
tional affects.~Convection over stress-free boundaries can
possess Ekman layers ifl is not horizontally uniform
@17,25#.! In addition, making use of our observed scaling of
dE and l, we expect a similar crossover for the no-slip
Ro50.75 solutions at Ra'1016.

It may seem a surprise that strongly rotating and nonro-
tating convection should transport heat in the same manner.
This is especially striking considering the strong vortical in-
teractions of plumes and the additional transport by Ekman
pumping that exist in rotating convection, but not in nonro-
tating convection. One may expect significant departures as
Ro→0: as Ta is increased, so isk0 ~see Table I! @26#, lead-
ing to the possible loss of dominance of boundary-layer
shear~between plumes! to the dynamics of plumes them-
selves. However, for Ro&1, we have another convective re-
gime whose instabilities, coherent structure dynamics, and
boundary layers are all unique, which exhibits the exponen-
tial PDFs and 2/7 scaling seen in other fully developed re-
gimes, indicating that the explanation for these phenomena
does not lie in the specifics of the dynamics, but are generic
features of fluid turbulence. Two features thatare common
to all physical regimes for which the 2/7 law is known to
hold are~1! coherent plume structures capable of generating
strong local shears and~2! no-slip boundaries~barring a fur-
ther stress-free transition at larger Ra!.
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FIG. 2. Probability density functions~PDFs! for vertical vortic-
ity v. For Ra between 63105 and 108, the PDF exhibits a continu-
ous transition from Gaussian to exponential form for the anticy-
clonic tail ~exponential cyclonic tails exist for all Ra.63105).
Gaussian~dotted! and exponential~dashed! distributions with zero
mean and unit variance are shown.
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